\(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))} \, dx\) [157]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 192 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=-\frac {3 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d}-\frac {(5 A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {(7 A+5 C) \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {(5 A+3 C) \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {3 (7 A+5 C) \sin (c+d x)}{5 a d \sqrt {\cos (c+d x)}}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \]

[Out]

-3/5*(7*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-1/3*(
5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+1/5*(7*A+5*
C)*sin(d*x+c)/a/d/cos(d*x+c)^(5/2)-1/3*(5*A+3*C)*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)-(A+C)*sin(d*x+c)/d/cos(d*x+c)
^(5/2)/(a+a*cos(d*x+c))+3/5*(7*A+5*C)*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3121, 2827, 2716, 2719, 2720} \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=-\frac {(5 A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}-\frac {3 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)}-\frac {(5 A+3 C) \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(7 A+5 C) \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {3 (7 A+5 C) \sin (c+d x)}{5 a d \sqrt {\cos (c+d x)}} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*(a + a*Cos[c + d*x])),x]

[Out]

(-3*(7*A + 5*C)*EllipticE[(c + d*x)/2, 2])/(5*a*d) - ((5*A + 3*C)*EllipticF[(c + d*x)/2, 2])/(3*a*d) + ((7*A +
 5*C)*Sin[c + d*x])/(5*a*d*Cos[c + d*x]^(5/2)) - ((5*A + 3*C)*Sin[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)) + (3*(7
*A + 5*C)*Sin[c + d*x])/(5*a*d*Sqrt[Cos[c + d*x]]) - ((A + C)*Sin[c + d*x])/(d*Cos[c + d*x]^(5/2)*(a + a*Cos[c
 + d*x]))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))}+\frac {\int \frac {\frac {1}{2} a (7 A+5 C)-\frac {1}{2} a (5 A+3 C) \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx}{a^2} \\ & = -\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))}-\frac {(5 A+3 C) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{2 a}+\frac {(7 A+5 C) \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)} \, dx}{2 a} \\ & = \frac {(7 A+5 C) \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {(5 A+3 C) \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))}-\frac {(5 A+3 C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a}+\frac {(3 (7 A+5 C)) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{10 a} \\ & = -\frac {(5 A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {(7 A+5 C) \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {(5 A+3 C) \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {3 (7 A+5 C) \sin (c+d x)}{5 a d \sqrt {\cos (c+d x)}}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))}-\frac {(3 (7 A+5 C)) \int \sqrt {\cos (c+d x)} \, dx}{10 a} \\ & = -\frac {3 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d}-\frac {(5 A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {(7 A+5 C) \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {(5 A+3 C) \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {3 (7 A+5 C) \sin (c+d x)}{5 a d \sqrt {\cos (c+d x)}}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.34 (sec) , antiderivative size = 971, normalized size of antiderivative = 5.06 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (\frac {(16 A+10 C+5 A \cos (c)+5 C \cos (c)) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec (c)}{5 d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{d}+\frac {4 A \sec (c) \sec ^3(c+d x) \sin (d x)}{5 d}+\frac {4 \sec (c) \sec ^2(c+d x) (3 A \sin (c)-5 A \sin (d x))}{15 d}-\frac {4 \sec (c) \sec (c+d x) (5 A \sin (c)-24 A \sin (d x)-15 C \sin (d x))}{15 d}\right )}{a+a \cos (c+d x)}+\frac {5 A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}+\frac {C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}+\frac {21 A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d (a+a \cos (c+d x))}+\frac {3 C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (a+a \cos (c+d x))} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*(a + a*Cos[c + d*x])),x]

[Out]

(Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*(((16*A + 10*C + 5*A*Cos[c] + 5*C*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[c])/(
5*d) + (2*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d + (4*A*Sec[c]*Sec[c + d*x]^3*Sin[d*
x])/(5*d) + (4*Sec[c]*Sec[c + d*x]^2*(3*A*Sin[c] - 5*A*Sin[d*x]))/(15*d) - (4*Sec[c]*Sec[c + d*x]*(5*A*Sin[c]
- 24*A*Sin[d*x] - 15*C*Sin[d*x]))/(15*d)))/(a + a*Cos[c + d*x]) + (5*A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Hypergeom
etricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x -
 ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c
]]]])/(3*d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) + (C*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4,
 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]
]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(a +
a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) + (21*A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2,
-1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]
]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan
[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[
1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(10*d*(a + a
*Cos[c + d*x])) + (3*C*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x
 + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x
+ ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x +
 ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c
]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d*(a + a*Cos[c + d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(775\) vs. \(2(226)=452\).

Time = 10.43 (sec) , antiderivative size = 776, normalized size of antiderivative = 4.04

method result size
default \(\text {Expression too large to display}\) \(776\)

[In]

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+cos(d*x+c)*a),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*((-A-C)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)+2/5*A/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/
2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d
*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)-2*A*(-1/6*
cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A+2*C)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+
1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 333, normalized size of antiderivative = 1.73 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\frac {2 \, {\left (9 \, {\left (7 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (19 \, A + 15 \, C\right )} \cos \left (d x + c\right )^{2} - 4 \, A \cos \left (d x + c\right ) + 6 \, A\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (\sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \cos \left (d x + c\right )^{4} + \sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \cos \left (d x + c\right )^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (\sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \cos \left (d x + c\right )^{4} + \sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \cos \left (d x + c\right )^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 \, {\left (\sqrt {2} {\left (7 i \, A + 5 i \, C\right )} \cos \left (d x + c\right )^{4} + \sqrt {2} {\left (7 i \, A + 5 i \, C\right )} \cos \left (d x + c\right )^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 \, {\left (\sqrt {2} {\left (-7 i \, A - 5 i \, C\right )} \cos \left (d x + c\right )^{4} + \sqrt {2} {\left (-7 i \, A - 5 i \, C\right )} \cos \left (d x + c\right )^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{30 \, {\left (a d \cos \left (d x + c\right )^{4} + a d \cos \left (d x + c\right )^{3}\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/30*(2*(9*(7*A + 5*C)*cos(d*x + c)^3 + 2*(19*A + 15*C)*cos(d*x + c)^2 - 4*A*cos(d*x + c) + 6*A)*sqrt(cos(d*x
+ c))*sin(d*x + c) - 5*(sqrt(2)*(-5*I*A - 3*I*C)*cos(d*x + c)^4 + sqrt(2)*(-5*I*A - 3*I*C)*cos(d*x + c)^3)*wei
erstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*(sqrt(2)*(5*I*A + 3*I*C)*cos(d*x + c)^4 + sqrt(2)*(
5*I*A + 3*I*C)*cos(d*x + c)^3)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 9*(sqrt(2)*(7*I*A +
 5*I*C)*cos(d*x + c)^4 + sqrt(2)*(7*I*A + 5*I*C)*cos(d*x + c)^3)*weierstrassZeta(-4, 0, weierstrassPInverse(-4
, 0, cos(d*x + c) + I*sin(d*x + c))) - 9*(sqrt(2)*(-7*I*A - 5*I*C)*cos(d*x + c)^4 + sqrt(2)*(-7*I*A - 5*I*C)*c
os(d*x + c)^3)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x
 + c)^4 + a*d*cos(d*x + c)^3)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2)/(a+a*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)*cos(d*x + c)^(7/2)), x)

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)*cos(d*x + c)^(7/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \cos (c+d x))} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{7/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(a + a*cos(c + d*x))),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(a + a*cos(c + d*x))), x)